Unique Paper Code	$: 32341502$
Name of Course	$:$ B.Sc. Hons. Computer Science
Name of the Paper	$:$ Theory of Computation
Semester	$:$ V
Duration of Examination	$: 3$ Hours
Maximum Marks	$: 75$ Marks
Students admitted in the year	$: 2015,2016,2017,2018$

Instructions for Candidates:

1. Answer any FOUR questions.
2. All questions carry equal marks.
3. Assume $\sum=\{a, b\}$ for all the questions unless specified otherwise.

1.	Construct a regular expression and corresponding deterministic finite automaton (DFA) defining a language comprising all strings of length 5 or more such that the letter appearing just before the last is same as the second letter of the string.
2.	Construct a finite automaton (FA) for $F A_{1}+F A_{2}, F A_{1} \cdot F A_{2}$, and $F A_{1}{ }^{*}$.
3.	For languages, $L_{1}:(a a+a b+b a+b b)^{*}$ and $L_{2}:(a+b)^{*} a a(a+b)^{*}$, construct respective DFA's and derive a finite automaton that defines $L_{1} \cap L_{2}$. Also, construct a regular expression for the resultant DFA.
4.	Prove that the language $L=\left\{a^{n} b^{2 m} a^{2 m} b^{n}: n \geq 1\right\}$ is non-regular and construct a Pushdown Automaton (PDA) that accepts L. Trace the working of PDA on the string aabbbbaaabb.

5.	Consider the following context free grammar (CFG): $\begin{aligned} & S \rightarrow 0 A 0\|1 B 1\| B B \\ & A \rightarrow C \\ & B \rightarrow S \mid A \\ & C \rightarrow S \mid \in \end{aligned}$ Eliminate ϵ - productions, followed by the elimination of unit productions, and then remove all the useless symbols. Also, put the resultant grammar into Chomsky Normal Form (CNF). Here, \in represents the null string.
6.	Considering $\sum=\{a, b, \triangleright, \sqcup\}$, design a Turing Machine (TM) (single tape or multitape as you prefer) that transforms $\sqcup_{\mathrm{w}} \underline{\underline{\bigsqcup}}$ to $\underline{\amalg}_{\mathrm{w} w} \amalg$. Show the trace of TM on the string \sqcup abb $\underline{\amalg}$.

